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ABSTRACT 

The IEEE 802.16a standard provides for Broadband Wireless Access (BWA) for 

the global deployment of broadband Wireless Metropolitan Area Networks (WMANs).  

Commercially known as Wi-Max, the standard aims to provide large amounts of wireless 

data over long distances, in a cellular type structure with base stations and subscriber 

stations.  The standard uses Orthogonal Frequency Division Multiplexing (OFDM) which 

allows the transmission of high data rates in severe channel conditions without complex 

filters.  This thesis tested the performance of a developed partial band jamming algorithm 

on a modified 802.16a standard.  The partial band jamming was applied to 1/8, ¼ and ½ 

of the total subcarriers.  Additionally, both intentional and unintentional interference 

were added to the signal.  The modified code repeated the signal 48, 96, or 192 times and 

recombined the data using Maximal Ratio Combining.  This thesis explored the potential 

for performance gains by reducing the data rate with a repetition code.  The evaluation 

was performed in MATLAB®. 
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EXECUTIVE SUMMARY 

The demand for reliable, high-speed wireless communications will only continue 

to grow in the upcoming years.  This demand has spread to places where high-speed 

Internet was previously unfeasible due to the infrastructure limits of wire line systems 

such as cable and digital subscriber line (DSL) systems.   There are many wireless 

communication standards already developed and in use today, such as 802.11g or “Wi-

Fi,” and numerous proprietary systems but they have certain limitations.  The IEEE 

802.16a standard is a very promising standard with immense interest in the commercial 

and military sectors.  The standard provides for broadband wireless access (BWA) in the 

2-11 GHz band of spectrum and can accommodate Non Line of Sight (NLOS) 

communications [1].  In order to provide high data rates, the standard utilizes three modes 

of modulation.  The three modes are: single carrier (SCa), orthogonal frequency division 

multiplexing (OFDM), and orthogonal frequency division multiple access (OFDMA) [1].  

This thesis includes a performance analysis of the standard against different types of 

jamming and white noise using a simulation in MATLAB®.  Potential military situations 

such as those with enemies intentionally or unintentionally interfering with wireless 

communications were simulated to explore the extent of the usefulness of this standard 

for military communications. 

OFDM provides for the transmission of broadband signals in a manner such that 

the signal experiences flat fading while transmitting at a high data rate.  OFDM uses 

overlapping multiple orthogonal subcarriers which is spectrally efficient.  OFDM is less 

susceptible to frequency selective fading because of the narrow bandwidths of the 

individual subcarriers. 

In the 802.16a standard, synchronization is of the utmost importance.  If any 

frequency offset occurs during transmission, intercarrier interference (ICI) develops at 

the receiver.  Alternatively, timing problems at the beginning of the OFDM symbol can 

cause ISI.  Channel estimation is a critical portion of the 802.16a standard and is 

performed by using a preamble.  Coherent detection, equalization and Maximal Ratio 



 xx

Combining (MRC) would not be feasible without channel estimation.  Frequency 

synchronization is also critical to the spectrally efficient OFDM with its overlapping 

subcarriers. 

The objective of this thesis was to extend the analysis of the IEEE 802.16a done 

by MAJ Smith, USMC [2] examining partial band jamming against 802.16a.  The 

802.16a code was modified with repetition coding to repeat the data 48, 96 or 192 times 

to examine the effects of reducing the data to enhance performance and robustness to 

interference.  The model was tested in the presence of: AWGN only, AWGN plus a 

broadband unintentional interference signal, AWGN plus narrowband unintentional 

interference signals, AWGN plus a broadband intentional interference signal and AWGN 

plus narrowband intentional interference signals.  Partial band jamming was added to 1/8, 

¼ and ½ of the total non null subcarriers.  The effects of unintentional interference vs. 

intentional interference were explored to determine if the total amount of power or the 

placement of the interference signal was the most significant factor.  The repeated data 

was combined at the receiver using MRC.  The overarching objective of this project was 

to provide useful information to the U.S. Military about wireless communications in 

harsh environments. 

The results of the research followed the expectations.  It was expected that as the 

user reduced the data rate through the use of the repetition code, the performance would 

improve.  The data rates of 54 Mb/s and 12 Mb/s were chosen for rigorous testing as 54 

Mb/s offered the greatest data rate with the poorest reliability while 12 Mb/s is the lowest 

supported data rate with the greatest reliability.  With ½ of the channels experiencing 

jamming, the effects of repetition and MRC were tested on 54 Mb/s and 12 Mb/s.  There 

was an improvement of nearly 18 dB by repeating the data 48 times with a 54 Mb/s data 

rate.  The same amount of repetition yielded an improvement of only 4 dB for 12 Mb/s.  

Additionally, as the repetition increased from 48 to 192, the amount of improvement 

reduced while the increased repetition had a larger effect on the total data rate.  Repeating 

the data 48 times yielded the largest performance gains for the smallest reduction in data 

rate.  It was also found that the impact of repetition coding increased with the data rate.  

Finally, through testing with intentional interference, it was determined that the amount 



 xxi

of interference power is a more significant factor than the placement of interference 

power.  The performance of the system against the different types of jamming was 

enhanced significantly through the use of MRC.  The standard proved itself to be a robust 

and potentially viable option for military wireless communications in harsh 

environments. 
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I. INTRODUCTION 

A. BACKGROUND 

The IEEE 802.16 standard provides for Broadband Wireless Access (BWA) that 

offers a broadband connection and a low cost solution to extend the Internet to the end 

user in the 11-66 GHz range. Approved two years after 802.16, the IEEE 802.16a 

standard provides for BWA for the global deployment of broadband Wireless 

Metropolitan Area Networks (WMANs) [1].  802.16a operates in the 2-11 GHz range and 

provides for Non Line of Sight (NLOS) communications.  The commercial and military 

demand for new and improved wireless technologies in new innovative uses is strong.  

The military is interested in this wireless technology as it could enhance the capabilities 

of the systems in use today and provide a low cost option in comparison to similar 

military radio systems.  

B. OBJECTIVE 

The objective of this thesis was to extend the analysis of the IEEE 802.16a done 

by MAJ Smith, USMC [2] by examining partial band jamming against 802.16a.  The 

802.16a was modified with repetition coding and tested in the presence of: AWGN only, 

AWGN plus a broadband unintentional interference signal, AWGN plus narrowband 

unintentional interference signals, AWGN plus a broadband intentional interference 

signal and AWGN plus narrowband intentional interference signals.  This thesis tested 

the interference against a receiver utilizing Maximal Ratio Combining.  The overarching 

objective of this project was to provide useful information to the U.S. Military about 

wireless communications in harsh environments. 

C. RELATED WORK  

This study extends the work done by LT Herlands, which was an examination of 

the effects partial band jamming against an IEEE WLAN standard, 802.11g with 

diversity and MRC [3].  It was found repeating the data offered the user a option to have 
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greater performance at the cost of data throughput [3].  He developed the partial band 

jamming algorithm which randomly assigned interference to the specified number of 

subcarriers.  The testing phase of this thesis closely followed his procedure. 

This thesis took the developed partial band jamming algorithm and the established 

testing procedure and applied them to the 802.16a code modified by MAJ Smith in his 

thesis [2].  MAJ Smith modified the code by repeating the data 48, 96 or 192 times and 

recombining the data with MRC [2].  . 

D. THESIS ORGANIZATION 

This thesis provides an overview of the 802.16a standard’s architecture, MAC and 

PHY layers as well as channel model issues.  MRC and OFDM are also discussed. 

The thesis is organized into the following chapters: 

Chapter II provides an overview the 802.16a standard’s architecture, MAC layer 

and physical layer.  Additionally, the chapter discusses the channel model used, the 

concept of Maximal Ratio Combining and propagation loss. 

Chapter III contains the simulations of 802.16a against partial band jamming.  

This chapter includes a presentation of the results of the simulations with accompanying 

discussions of all the findings. 

Chapter IV provides the conclusions and presents recommendations for future 

work. 

This chapter gave an introduction to the material to be covered in the thesis.  The 

chapter offered a broad overview of the standard and its relevance for academic study.  

The next chapter will provide an overview of broadband wireless networking as well as 

the MAC and PHY layers of the 802.16a standard.  Additionally, the chapter discusses 

the concepts of OFDM, channel models and the concept of Maximal Ratio Combining. 
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II. BACKGROUND 

The IEEE 802.16’s Task Group a (TGa) developed the IEEE standard 802.16a to 

provide specifications for the 2-11 GHz range.  The standards to define the medium 

access control and physical layer specifications were designed by this group and are 

explored in this thesis. 

This chapter discusses the 802.16a standard beginning with a general overview of 

the system architecture.  The chapter also provides information about the MAC and PHY 

layers of the standard, specifically focusing on the Wireless MAN-OFDM mode of the 

PHY layer. 

Additionally, this chapter discusses large scale and small scale fading with a focus 

on multipath.  Multipath fading is the biggest impairment to wireless communications in 

this type of network.   

A. IEEE 802.16A OVERVIEW 

Approved in 2001, the IEEE 802.16 standard provides for BWA in the 10-66 GHz 

range [4].  With such high frequencies, attenuation is a large problem for non line of sight 

(NLOS) communications [4].  In 2003, the IEEE published 802.16a, which is an 

amendment to 802.16 allowing for communications in the 2-11 GHz range [4]. In this 

frequency range, the wavelength is larger than in 10-66 GHz and so the standard can 

handle NLOS communications.  In the 2-11 GHz range are unlicensed signals so to meet 

the challenges associated with unlicensed bands and NLOS, advanced power 

management techniques are critical to 802.16a.  These techniques reduce interference 

from the channel and from other users while abiding by the power restrictions in the 

unlicensed bands.  Since 2001, there have been a variety of different standards within the 

802.16 family either written or in development to meet different goals.  These different 

standards are listed below in Table 1. [5] 
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Specifications Year of  

Ratification 

Description 

802.16  [1] 

802.16a [2] 

802.16c [3] 

802.16d [4] 

 

802.16e 

802.16f 

802.16g 

802.16h 

802.20 

 

WiBRO 

 

2001 

2003 

2002 

2004 

  

2005 

2005 

In Progress 

In Progress 

In Progress 

 

 

MAC and PHY definition for fixed broadband wireless access in the 10-66 GHz bands 
 
Amendment contains new PHY definitions for 2-11GHz bands.  

System profiles for 10-66 GHz operations 

Contains 802.16, 802.16a, and various MAC enhancements. Considered the base for 
fixed broadband wireless specification 

 
Amendment to 802.16d specification. Explicit support for mobility.  

802.16 Management Information Base (MIB) 

Network Management  

Coexistence in license exempt frequency bands 

Mobile broadband wireless access standards group. Focus on mobility supporting train-
like speeds.  

Korean wireless broadband standard, to be incorporated into upcoming 802.16e 
standard 

Table 1 Summary of Various 802.16 Technology Specifications (From Ref. [6]). 
 

1. System Architecture Overview 

Broadband Wireless Access (BWA) system architecture is similar to cellular 

networks in that there are fixed Base Stations (BSs) and Subscriber Stations (SSs).  BWA 

systems require fixed infrastructure sites like cellular networks. The BSs provide the link 

to the wired backbone of the network and to the wireless SSs.  A coverage area is made 

up of one BS and one or multiple SSs which can be grouped together.  The BSs remain 

interconnected.  BWA also heavily relies on frequency reuse like cellular networks. [7] 

BSs provide point to multi point (PMP) to communicate with multiple SSs.  

Additionally, there are mesh networks, or multi-point to multi-point (MP-MP).  With 

MP-MP technology, the SSs can communicate with other SSs without going through the 

BS. BSs can use sectorized antennas while SSs often use highly directional antennas 

pointed for optimal data rates.  BSs even allow for the use of adaptive antenna systems 

(AAS) to dynamically steer antenna beams as communication and channel requirements 

change.  This system allows 802.16 to achieve higher data rates than 802.11 which did 

not specify directional antennas.  The downlink (DL) refers to the BS to SS 

communications while the uplink (UL) refers to the SS to BS communications. [7] 
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2. The 802.16 MAC Layer 

The Medium Access Control (MAC) layer is divided into three sublayers which 

are the convergence sublayer (CS), the common part sublayer (CPS) and the security 

sublayer [1].  There are assumed to be two types of traffic on the network: a) 

asynchronous transfer mode (ATM) cells and b) Internet Protocol (IP) packets [8]. The 

relations between the MAC sublayers and PHY layer as well as the Service Access Points 

(SAP) are shown below in Figure 1. 

 
Figure 1 IEEE 802.16 Protocol Structure showing SAP’s (From Ref. [1].) 

 

Channelization, which divides the wideband signal into smaller narrowband 

signals [9], is accomplished through time division multiplexing (TDM).  The UL and DL 

are separated by duplexing. Specifically, time-division duplexing (TDD) and frequency-

division duplexing (FDD) separate the UL and DL.  In TDD, each frame is composed of 

an UL sub-frame and a DL sub-frame.  In FDD however, the UL and DL sub-frames are 

transmitted through different frequency channels.  TDD is illustrated in the figure below, 

Figure 2. [1] 

 



 6

 
Figure 2 Example of TDD (From Ref.[1]). 

 

The MAC layer is connection oriented.  The MAC layer controls quality-of-

service, security issues and the access schemes to support multiple users.  Additionally, 

the MAC controls the procedures to define burst start times. Features of the MAC are 

listed below in Figure 3. [1] 
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Figure 3 802.16a MAC Features (From Ref. [10]). 

 

3. The 802.16 PHY Layer 

The purpose of the 802.16a PHY layer is to transmit messages from the MAC 

layer.  The messages are transmitted using QPSK, 16 QAM, or 64 QAM modulations and 

the PHY layer changes the modulation adaptively.  The PHY layer achieves this task 

through the use of two sublayers which are the transmission convergence sublayer and 

the physical medium dependent sublayer.  The MAC layer accesses the PHY layer 

through Service Access Points (SAPs) to transmit its messages.  The PHY layer sends the 

messages wirelessly in the 2-11 GHz band. .   A few of the more beneficial features of the 

PHY are listed in Table 2.  The PHY layer uses these three methods to transmit and 

receive data: [1] 

• Single-Carrier (SCa) 
• OFDM 
• OFDMA 
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Table 2 802.16A PHY Layer Features (From Ref.[10]). 

 

a.  Wireless Man-SCa 

The Wireless Man-SCa PHY is based on single carrier technology and 

sends all its data on one very high data rate channel.  Similar to the other modes, it is 

designed for NLOS operations in the 2-11 GHz frequency bands.  This is the only mode 

not to use OFDM. [1]   

This mode uses the Framed Burst format for both the DL and UL data.  

The DL supports the Time Division Multiplex (TDM) bursts while the UL supports 

TDMA (Time Division Multiple Access) bursts.  The difference between the two is that 

TDM bursts are separated by preambles and gaps in transmission while TDMA bursts are 

not separated.  Furthermore, TDMA uses a central scheduler to allocate the UL 

bandwidth while TDM does not.  An overall DL or UL subframe consists of many burst 

frames.  The preamble contains a ramp up period followed by the preamble body.  The 

preamble consists of Unique Words which aid in channel estimation.  The general burst 

frame format is shown below in Figure 4. [1] 
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Figure 4 Fundamental Burst Framing Elements (Ref. [11]). 

 

After the burst preamble comes the burst payload which carries the data 

and may contain periodically inserted Pilot Words.  A payload word, which includes the 

payload data and the optional Pilot Word, is made up of F symbols.  Out of the F 

symbols, P of them are for the optional Pilot Word which is an integer multiple of unique 

words.  F is constant for the burst when Pilot Words are being transmitted.  Transmission 

of the pilot symbols stops when there are F-P or fewer symbols left. The payload 

architecture is shown below in Figure 5.[1] 

 

 
Figure 5 Pilot Word Patterning within a Burst (Ref. [1].) 

 
 
 

b.  Wireless Man – OFDM 

The widespread use of orthogonal frequency division multiplexing 

(OFDM) in wireless communications was not a reasonable option until recently.  The 

development of improved nanotechnology chips that can perform complex mathematical 

operations allows for OFDM to be done without complex algorithms at the receiver 
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which was the primary obstacle to OFDM. The chip uses the Inverse Fast Fourier 

Transform (IFFT) to put the signal into the time domain from the frequency domain.  As 

OFDM transmits the bits in parallel, each bit can be longer for the same bit rate which 

greatly mitigates the fading effects of the channel.  Additionally, parallel transmission 

increases the data rate.  Also, there is a cyclic prefix appended to the beginning of each 

symbol to act as a buffer against ISI by reducing the multipath and delay spread effects.  

Below is a diagram of the 802.16a WirelessMAN-OFDM Frequency Description in 

Figure 6.[1] 

 
Figure 6 OFDM Frequency Description (Ref. [1]). 

 
 
 

OFDM is the modulation of choice due to its ability to mitigate most 

common distortions from multipath.  Most communications systems use expensive 

adaptive filters while OFDM instead employs guard intervals between symbols to counter 

time domain smearing.  As each data symbol is modulated on a different subcarrier, the 

transmitted signal becomes [1] 
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where kc  is the complex baseband modulation symbol, ∆f is the sampling frequency 

divided by the number of points in the Fast Fourier Transform (FFT) fsample/NFFT, and Tg 

is the length of the cyclic prefix.  Table 3 provides many Wireless MAN OFDM symbol 

parameters.  Of the 256 total subcarriers available, 200 are used subcarriers, while the 
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remaining 56 are null subcarriers, meaning they have no transmit power.  Of the 200 

used, 8 are pilot carriers while 192 are data carriers.  The remaining 56 null carriers are 

divided with 55 as guard bands and one as the DC carrier.  The guard bands allow 

separation against neighboring channels. [1] 

 

 
Table 3 OFDM Symbol Parameters (From Ref. [1]). 

 

Another benefit of OFDM is that it uses eight dedicated pilot carriers, 

which allows for improved synchronization and phase tracking. Each of the eight pilot 

carriers transmits the same pilot symbol which is derived from a pseudorandom 

sequence.  In the SCa mode, Pilot Words can only be sent periodically.  For all of these 
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reasons, OFDM is considered the best choice when optimizing cost and performance for 

Wireless MANs when compared to SCa. [1] 

c. Wireless MAN-OFDMA 

Wireless MAN-orthogonal frequency division multiple access (OFDMA) 

segments the various subcarriers into subchannels for both the UL and DL to support 

multiple users.  The data is divided on the subchannels so that OFDMA symbols are 

mapped in the time domain via TDMA but also must be mapped to the specific 

subchannel on which each symbol will be transmitted, thereby resulting in a two-

dimensional “data region.” Several segmented subchannels are shown below in Figure 

7.[1]   

 
Figure 7 OFDMA Frequency Domain and Subchannels (From Ref. [1]). 

 

The BS can selectively transmit subchannels whereas the SS is assigned 

one or more subchannels. Table 4 lists notable features of OFDMA.  Another element of 

OFDMA is that in addition to fixed location pilots, there are variable location pilot 

carriers.  The variable pilot location changes every symbol and repeats every four. [1]   
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Table 4 OFDMA DL Carrier Allocations (From Ref. [1]). 

 

B. CHANNEL MODEL 

Determining the channel model is one of the most difficult aspects of engineering 

wireless communications but is also one of the most important.  The transmission path 

between the transmitter and receiver can vary between a complex path with buildings, 

foliage and obstacles to a relatively simple line of sight path.  Radio channels are not 

fixed like wired channels and the constant changing is a major consideration.  Channel 
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modeling is typically done in a statistical fashion. In this thesis, a Rayleigh fading model 

is used as the channel model for NLOS communications. [11] 

1. Multipath Fading 

There are many elements that go into the study of the propagation of 

electromagnetic waves.  Three of the most important factors in the losses the waves 

experience are reflection, diffraction and scattering.  In any environment, but particularly 

in a dense urban environment, it may not be possible to have direct line of sight 

communications.  An example of a multipath fading environment with reflectors is 

shown below in Figure 8. [11]  

Channel
Model

τ1

τ2

τ3

Reflector Receiver

Reflector

Transmitter

Transmitted
Signal

Received
Signal

Time

 
Figure 8 Multipath Fading Environment (From Ref. [12]). 

 

High rise buildings, dense urban environments and foliage can cause significant 

losses from reflection and scattering.  In a real world setting, the wave will be reflected 

off of multiple surfaces in its trip from the transmitter to the receiver.  As seen in Figure 8 

reflecting objects and other scatterers create a multipath channel.  There are multiple 
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overlapping versions of the transmitted signal at the receiver antenna which the receiver 

must decipher.  This is known as multipath fading. [11] 

The type of fading determines the mathematical model used in simulating the 

transmissions.  The factors in deciding which type of fading is most prevalent are RMS 

delay spread, coherence bandwidth, and Doppler spread or coherence time.  The different 

factors are used to characterize if the radio channel experiences flat or frequency 

selective fading and whether the channel undergoes fast or slow fading. [11]  

a. Large-Scale Propagation Loss   

Large scale propagation models are those that focus on determining the 

mean signal strength for a large (100-10000m) transmitter receiver separation distance 

[11].  In the large scale propagation modeling, the three most important factors are 

distance, antenna height and frequency [11].  The 802.16a standard is designed to work in 

metropolitan areas and so the model must be chosen accordingly [1].  

b. Small-Scale Propagation Loss 

There are a number of physical factors that influence the severity and type 

of small scale fading a radio propagation channel experiences.  They are multipath 

propagation, the speed of the mobile, speed of the surrounding objects and the 

transmission bandwidth.  The speed of the mobile is unimportant because in the case of 

WLANs the end user is either not moving at all or moving very little.  The speed of the 

surrounding objects is only important when their speed is greater than the speed of the 

mobile which is the case in a WLAN. [11]  

Small scale fading can not be described by equations such as in the 

Okumura-Hata model because the channel is dynamic. It is a stochastic process and can 

be defined only in terms of probabilities and statistical averages. [13] 

In order to compare multipath channels and fading effects, there must be 

parameters to measure the channels.  Some of the main parameters used are mean excess 

delay, RMS delay spread and excess delay spread.  Mean excess delay (
_

τ ) and RMS 
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delay spread ( τσ ) are the most commonly used parameters.  [11]  The mean excess delay 

is the first moment of the power delay profile and is defined as 
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where ak is the received signal amplitude at the given excess delayτκ where the 

transmitted signal is 2( )k kP aτ = [11]. The RMS delay spread, the standard deviation of 

the power delay spread, is [11] 
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Given that a channel is wide sense stationary or time-invariant over small-

scale time, then the channel impulse response is described as 
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where ai and θi are the amplitude and phase of the from the i-th path and δ is Dirac delta 

function [11].  The power delay profile is given by 

 2( ) ( ; )bP k h tτ τ=  (5) 
      
where ( ; )bh t τ  is the result of ( )bh τ  after being used with a probing pulse ( ) ( )p t tδ τ≈ −  

to sound the channel.  .Specifically, the power delay profile is the received power 

expressed as a function of the excess delay when the channel is excited by a probing 

pulse ( ) ( )p t tδ τ≈ − . [11]   

        
In the coherence bandwidth, the signal will usually experience roughly the 

same attenuation and linear phase shift which makes detection easier [11].   The channel 
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is considered “flat” within the coherence bandwidth and it is the range in which two 

different frequencies will have high correlation of attenuation [11].  There are two 

general equations for coherence bandwidth, each defined for a different value of the 

correlation.  For a correlation of 0.9, the equation is [11] 

 1
50cB

τσ
≈  (6) 

 
while for 0.5, the equation is 

 1
5cB

τσ
≈  (7) 

 

Doppler spread and coherence time describe the time varying property of 

the channel.  Frequency dispersion is caused by the motion of objects in the channel or by 

the relative motion of the base station and the end user which causes the frequency of the 

signal to change.  Coherence time is the time domain equivalent of the Doppler spread 

and is inversely proportional to the Doppler spread.  Coherence time is the time duration 

during which the channel impulse response is roughly time invariant.  The geometric 

mean is the metric used to calculate coherence time and is given as [11], 

 2
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where mf  is the maximum Doppler shift. [11]   
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Small-Scale Fading (based on multipath delay spread) 

Frequency Non-selective (Flat) Fading Frequency Selective Fading 

1. BW of Signal  <  Coherence BW of Channel 

2. Delay Spread  <  Symbol Period 

1. BW of Signal  >  Coherence BW of Channel 

2. Delay Spread  >  Symbol Period 

 

Small-Scale Fading (based on Doppler spread) 

Fast Fading Slow Fading 

1. High Doppler Spread 

2. Coherence Time  <  Symbol Period 

3. Channel Variations Faster than Baseband 

Signal Variations 

1. Low Doppler Spread 

2. Coherence Time  >  Symbol Period 

3. Channel Variations Slower than Baseband 

Signal Variations 

Table 5 Types of Small Scale Fading (After Ref. [11]). 
 

By looking at Table 5 it can be seen that the slow fading model is the most 

accurate for 802.16a.  The Doppler spread is negligible, if not zero, as the receiver and 

transmitter are specified to be fixed in the standard [1].  This is shown below.  The 

maximum relative velocity in the channel is assumed to be a car traveling at a speed of 

100 km/hr, or 62.2 mph, and a likely center frequency supported by the standard is 5 

GHz. Under these assumptions the Doppler shift would be 
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Also, there is a long coherence time which accommodates parallel 

transmission and the subsequent longer symbol durations. Using equation 8, an 

approximate coherence time can be determined. 
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Each symbol can be longer for the same bit rate which reduces the fading 

effects of the channel [5].  Using a center frequency of 11 GHz, a worst case coherence 

time can be found using the same equations.  This value is 44.15 10CT x s−= . 

Coherence bandwidth is one of OFDM’s primary advantages in terms of 

fading.  RMS delay spreads in outdoor environments vary from 100 ns to 5.3 µ s [14].  

The corresponding coherence bandwidths are between 188.7 kHz and 10 MHz.  Under a 

worst-case scenario, a coherence bandwidth of 188 kHz would result in a highly 

frequency selective fading channel for a single-carrier transmission of 7 MHz.  In 

802.16a, 7 MHz is a valid single-carrier bandwidth.  The benefit of OFDM is that an 

OFDM symbol with 200 subcarriers taking up 7 MHz of bandwidth would have 

individual subcarrier bandwidths of only 35 kHz allowing each individual subcarrier’s 

signal to operate in a flat fading channel [1].  Hence, in the frequency domain, each 

subcarrier’s symbol is uniformly attenuated. [5] 

 

c. Rayleigh Fading Model 

The Rayleigh fading model is a statistical model used to describe a flat 

fading signal in a NLOS channel with significant multipath.  The model is most 

appropriate in dense urban environments such as major metropolitan areas where the BS 

is shorter than its surroundings.  The received signal amplitude is modeled to have a 

Rayleigh distribution. [13] The probability density function of the Rayleigh distribution is 

[11]; 

 
2

2 2( ) exp( )  0,
2

z zp z z
σ σ

= − ≥  (9) 

where { }2 22 .E zσ =    
 

C. MAXIMAL RATIO COMBINING 

Maximal ratio combining is a method of diversity combining in which signals 

from each channel are added together before being normalized to the root mean square of 
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the signal amplitude.  When used with multiple antennas, this technique can maximize 

the instantaneous SNR.  The coefficients that yield the maximum SNR are calculated 

using an optimization theory.  In this thesis, instead of testing multiple antennas and 

combining their inputs, the same data was repeated on multiple subcarriers and MRC was 

used to combine the subcarriers. [15] The complex envelope of the received signal for a 

single symbol on carrier l  can be written as 

 l l lr h s v= +  (10) 

, 

where lh  is the complex channel attenuation per subcarrier, s is the transmitted signal, l is 

a specific data subcarrier and lv  are the complex Gaussian noise samples [15].  The 

complex channel attenuation includes the effects of attenuation and phase shift by flat, 

slow fading.  The technique calls for the use of linear combinations of the signal:[12] 

  

 * * *
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where L  is the diversity which is the number of data subcarriers carrying the identical 

signal and also equals the number of data subcarriers to be combined in the demodulation 

algorithm and lw  are the complex weighting factors. 

Equation (11) can be written in the frequency domain because discrete Fourier 

transforms are linear operators.  The frequency domain expression is: [15] 
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where lH  are the channel frequency response estimates for OFDM subcarrier l  and lR  

are the received subcarriers’ data.  The denominator provides the normalization to the 

root mean square of the signal amplitude in the numerator [15].  Equation 12 implies that 
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MRC performs equalization.  However, when tests were performed without MRC,  

a separate equalization function was used [2]. 

In this thesis the same data was repeated over various numbers of the 192 

available data subcarriers.  The received signals were then combined using MRC at the 

receiver.  This thesis conducted its study repeating the data on all 192 data subcarriers, on 

96 data subcarriers and on 48 data subcarriers.  

D.  SUMMARY 

This chapter discussed the different modulation methods used by 802.16a.  The 

standard can use either a single carrier mode, OFDM or OFDMA.  The single carrier 

mode is supported by a higher per-carrier data rate to make up for its lack of parallel data 

subcarriers.  The OFDM and OFDMA are scalable and can support different numbers of 

users. 

Additionally, the terms and concepts central to choosing accurate channel models 

were presented.  Rayleigh fading, without a direct signal path, is used to model the worst 

case scenario, which is no line of sight path with many significant multipaths.  This is in 

addition to AWGN which is always present.  The channel is slow fading due to the fixed 

locations of the BSs and the SSs.  This can be shown by comparing the coherence time 

and the symbol time.  The coherence time was found to be approximately 49.1 10CT x s−=  

for a likely center frequency and 44.15 10CT x s−= for a worst case scenario.  The symbol 

time can be approximated as 610ST s−< , resulting in C ST T>>  for either coherence time.  

This study’s main focus is the performance of 802.16a modeled in a Rayleigh fading 

channel.  The next chapter presents the results as well as the analysis of 802.16a tested in 

various environments.  The tests are described as well as the meaning of the results. 
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III. PERFORMANCE ANALYSIS OF PARTIAL BAND JAMMING 
AGAINST 802.16A 

A. OVERVIEW 

The results of this chapter will be broken up into two categories: 

• MRC in AWGN with broadband and narrowband unintentional 

interference 

• MRC in AWGN with broadband and narrowband intentional interference 

 

In this experiment a broadband interference source refers to sources that cover all 

200 user subcarriers whereas narrowband interference sources cover only some of the 

data subcarriers.  Experiments were conducted using interference signals overlapping 25, 

50,  100 and all 200 of the used data subcarriers. 

Unintentional interference signals were added to the channel to test the 

performance of diversity with MRC techniques if the 802.16a system was operating in an 

environment with either narrowband or broadband signals which is very likely.  It is 

expected that diversity with MRC will dramatically improve the performance.  The 

graphs in the unintentional interference section display the SIR level for each affected 

channel.  The experiments with intentional interference signals tested the system with 

MRC if someone was intentionally interfering in an effort to disrupt communications.  

An explanation of intentional interference is offered later. 

All simulations were run with a Rayleigh fading channel with a RMS delay 

spread of 50 ns .  Testing with a RMS delay spread of 50 ns simulates conditions in an 

indoor environment.  Larger RMS delay spread values are a better simulation of an urban 

environment.  [11] 
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B. SIGNAL PERFORMANCE IN AWGN WITH BROADBAND AND 
NARROWBAND INTERFERENCE WITHOUT MRC 

 Testing the performance of the signal in an environment containing AWGN with 

broadband and narrowband interference is the most realistic conditions for testing.  

Whether this network is used in the commercial sector or in military operations, there 

will always be white noise and mostly likely broadband and narrowband interference as 

well.  Knowing the capabilities and limits of this system operating in this environment is 

of utmost importance to the military where wireless communications are used on the 

battlefield to make important decisions and relay sensitive information. 

 For each experiment, it was assumed there was a noise floor 20 dB below the 

signal level.  Then, for each of the data rates, the different levels of MRC were tested 

with additional partial band interference.  The additional interference was bandlimited 

white noise and was added in 25, 50, 100 and all 200 of the used subcarriers.  It was 

assumed the signal to interference level was constant across all interference-corrupted 

subcarriers.  Additionally, it was assumed that the total interference power is directly 

proportional to the number of subcarriers undergoing interference.  The MATLAB® 

simulation measured the signal power and then adjusted the magnitude of the interference 

signal to correctly represent the desired SIR values. 

 A number of details about the simulations must be discussed.  For each /b iE N  

tested, 10,000 packets were transmitted.  The program formed the packets with random 

data then sent the data through the channel where noise was added.  Finally, the packets 

were received and each packet was compared to the original packet sent.  To determine 

the bP , or bit error rate, all the bit errors were summed for each b oE N , then divided by 

the number of total bits sent.  A packet was categorized as in error if any single bit was an 

uncorrected error.  Similarly to the  bP , the packet error rate (PER) was determined for 

each b oE N  by summing the packet errors and dividing by the total number of packets 

sent.  The packet length depended upon the amount of repetition and the number of DL 

bursts.  Similar packet lengths were desired despite the amount of repetition as PER 

depends on the packet length.  For MRC = 192, there were two DL bursts, for MRC = 96 



 25

there were four DL bursts, for MRC = 48, there were eight DL bursts and for MRC = 1 

there were also eight DL bursts.  The exception to the pattern for DL burst length was 

made for MRC =1 to have DL bursts = 8 instead of 384 due to simulation time 

constraints. 

1. Unintentional Interference 

The first six figures will show the effects of unintentional interference on 802.16a 

with a constant data rate and modulation scheme and no MRC.  The data rate values of 12 

Mb/s, 36 Mb/s and 54 Mb/s were chosen to represent the lowest value, the highest value 

and a value in the middle of the range.  In the upcoming figures, PBI = 25, 50, 100 or 200 

refers to partial band jamming being applied to 25, 50, 100 or 200 of the subcarriers. 
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a. Constant Data Rate and Modulation Scheme Plots 
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Figure 9 12 Mb/s, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 10 12 Mb/s, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 11 36 Mb/s, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 12 36 Mb/s, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 13 54 Mb/s, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 14 54 Mb/s, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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In Figure 9 through Figure 14, the results of unintentional interference all 

approach the horizontal line from the data of PBI = 0 and SNR = 20 which represents the 

bP  or the PER with no interference and an SNR = 20 dB.  It is expected that if the SIR 

ratio goes to 20 dB, the performance will meet the performance for AWGN only because 

as SIR increases past 20 dB, the AWGN will be the primary source of noise as the 

interference strength decreases.  The plotted lines would become level and remain 

constant at the bP  due to AWGN only.  Also, signals with fewer subcarriers affected by 

the unintentional interference have a much lower bP  and PER for a given SIR.  It is 

expected that as the amount of interference decreases, the bP  will be lower.  It should be 

noted that in Figure 14 there is an approximate PER of 1 under all conditions.  This 

demonstrates that without a higher SIR, the increased data rate of 54 Mb/s is useless due 

to the poor performance. 

In the above figures as well as the following figures, some curves have 

more points than others because when a data point was equal to zero, bP  = 0 or PER = 0, 

it did not plot due to the logarithmic scale used for the Y-axis in all plots.  This explains 

why some curves have a different range of b iE N than others and why in certain figures 

the legend describes four curves yet only two or three are apparent.  The other two curves 

were all zero and did not plot. 

Unintentional interference is a very likely source of interference.  An 

application of this testing would be to evaluate a wireless communication system in a 

NLOS environment with a lot of interference but no intentional interference.  An example 

of this would be a battlefield in which the enemy is not attempting to jam the signal. 

The following eight figures, Figure 15 through Figure 22 show the same 

data as the previous six but displayed differently.  These figures highlight the effects of 

one level of PBI on all of the data rates whereas the previous figures showed the effects 

of different levels of PBI on one data rate. 
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b. Constant Level of Partial or Full Band Interference Plots 
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Figure 15 PBI=25, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is the data rate. 
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Figure 16 PBI=25, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is the data rate.  
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Figure 17 PBI = 50, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is the data rate.  
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Figure 18 PBI = 50, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is the data rate.  
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Figure 19 PBI = 100, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is the data rate.  
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Figure 20 PBI = 100, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is the data rate. 
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Figure 21 PBI = 200, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is the data rate. 
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Figure 22 PBI = 200, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of interference.  Parameter is the data rate. 
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Unintentional interference, both partial and full band, negatively affects 

the performance of the different data rates and modulation schemes approximately the 

same.  It is expected that there is no large difference in effect from one data rate to the 

next as they are all equally interfered with and it should affect them similarly.  This can 

be shown by looking at Figure 15 and Figure 19.  All three data rates experience 

approximately a 6dB decrease in performance from PBI = 25 to PBI = 100.  This makes 

sense because there was a quadrupling of the interference power and subsequent a 6dB 

decrease.  Looking at Figure 17 for the change from PBI = 25 to PBI = 50, there was 

approximately a 3dB decrease in performance as the interference doubled.   The 

performance is better with a lower data rate regardless of the added interference.   

2. Intentional Interference 

The previous sets of figures showed the effects of unintentional interference on 

802.16a communications.  The intentional interferer has a set amount of power that must 

be split across the subcarriers whereas the unintentional interferer has the same amount of 

power per channel regardless of how many subcarriers.  The amount of power per 

subcarrier in an intentional interferer is inversely proportional to the number of subcarrier 

with interference.  For example, an intentional interferer can focus 10 watts on one 

subcarrier, 1 watt on 10 subcarriers or 0.05 watts on 200 subcarriers.  However in the 

case of unintentional interference, there would be 1 watt on each subcarrier leading to 1 

watt of interference for one subcarrier, 10 watts of interference for 10 subcarriers and 200 

watts of interference for 200 subcarriers.  The following plots, Figure 23 through Figure 

28, represent the effects of intentional interference with no MRC used.  The legends 

describe PBI because it is still partial band interference.  The difference between 

intentional and unintentional interference is how the interference power is calculated.  An 

application of this type of interference is a military wireless communication system used 

in battlefield setting where the enemy has established jamming devices and could raise 

the power of the jamming signal.  The enemy could continue to increase the interference 

power to disrupt the signal. 
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Figure 23 12 Mb/s, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of jamming.  Parameter is number of subcarriers jammed.   
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Figure 24 12 Mb/s, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of jamming.  Parameter is number of subcarriers jammed.   
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Figure 25 36 Mb/s, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of jamming.  Parameter is number of subcarriers jammed.   
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Figure 26 36 Mb/s, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of jamming.  Parameter is number of subcarriers jammed.   
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Figure 27 54 Mb/s, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in the 

presence of jamming.  Parameter is number of subcarriers jammed.   
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Figure 28 54 Mb/s, Probability of packet error vs. /b iE N  with / 20b oE N dB=  in the 

presence of jamming.  Parameter is number of subcarriers jammed. 
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Through careful observation of the data in Figure 23 through Figure 28, it 

is readily apparent that partial band intentional interference and full band intentional 

interference have the same effect on an 802.16a signal.  This shows that the location of 

the interference in the band is not important but rather the overall strength of the 

interference relative to the signal power.  This robustness to the location of the noise can 

be attributed to the scrambling and interleaving process used in 802.16a.   The scrambling 

and interleaving techniques spread the errors across the signal making them look more 

like random errors instead of being specifically caused by the narrow band interferer.  

The final result is that narrow band interference affects the network in the same manner 

as broadband noise. 

Additionally as shown in Figure 28, 54 Mb/s is essentially worthless 

regardless of the interference. 

C. SIGNAL PERFORMANCE IN AWGN WITH BROADBAND AND 
NARROWBAND INTERFERENCE WITH MRC 

To explore the effects of MRC in the presence of an interferer signal, simulations 

were run using 54 Mb/s and 12 Mb/s.  These two data rates were chosen because they 

represent the extremes of the data rate spectrum.  54 Mb/s provide the highest data rate 

and worst reliability, while 12 Mb/s provides the lowest data rate and best reliability.   

Testing the system in AWGN with broadband and narrowband interference simulates any 

type of realistic setting.  Regardless of where the system will be used, there will be 

AWGN and narrowband interference will likely be present.  These tests simulate a 

potential military communication system in a harsh setting such as an urban environment 

with many buildings and many sources of interference.  This is very applicable as war is 

increasingly waged in dense urban areas as opposed to wide open spaces. 

In the figures below, the MRC is varied. A value of MRC = 1, or L = 1, signifies 

there is no repetition or MRC and so different data is transmitted on every subcarrier.  

MRC = 48, or L = 48, signifies that the subcarriers are divided into four groups of 48 

while MRC = 96, or L = 96, represents the subcarriers divided into two groups of 96.  
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The subcarriers in a group transmit the same data but each group transmits different data.  

Lastly MRC = 192, or L = 192, means that all 192 subcarriers transmit the same data. 

The data rates listed in the figures represent the data rates including the repeated 

bits.  The actual data rates are the listed data rate divided by the amount of repetition 

used.  In the /b oE N  in the following figures, the bE  is the energy per transmitted bit.  

The energy per data bit is the energy per transmitted bit times L, the number of times 

each bit is repeated. 
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1. 54 Mb/s, Constant MRC with Unintentional Interference 
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Figure 29 54 Mb/s, MRC =1, Probability of bit error vs. /b iE N  with / 20b oE N dB= in 

the presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 30 54 Mb/s, MRC =1, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is number of interference-
corrupted subcarriers. 
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Figure 31 54 Mb/s, MRC =48, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 32 54 Mb/s, MRC =48, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is number of interference-
corrupted subcarriers. 
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Figure 33 54 Mb/s, MRC =96, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 34 54 Mb/s, MRC =96, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is number of interference-
corrupted subcarriers. 
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Figure 35 54 Mb/s, MRC =192, Probability of bit error vs. /b iE N  with / 20b oE N dB=  

in the presence of interference.  Parameter is number of interference-corrupted 
subcarriers. 
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Figure 36 54 Mb/s, MRC =192, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is number of interference-
corrupted subcarriers. 
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In Figure 29 through Figure 36, the performance of MRC in a range of 

unintentional interference was observed.  This was accomplished by holding the MRC 

constant and varying the amounts of PBI.  In each graph, the horizontal separation of the 

lines is roughly 3 dB.  This amount holds with the assumptions as to what constitutes 

unintentional interference.  As the number of signals with interference doubles, along 

with it doubles the total amount of interference.  Hence, the required SIR to maintain a 

constant bP  should be 3dB higher which is consistent with our findings.  Figure 29 and 

Figure 30 were essentially repeated from Figure 13 and Figure 14 so that they could be 

more easily compared with the other values of MRC in this section.   
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2. 54 Mb/s, Constant PBI with Unintentional Interference 
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Figure 37 54 Mb/s, PBI = 25, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is amount of repetition. 
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Figure 38 54 Mb/s, PBI = 25, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is amount of repetition. 
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Figure 39 54 Mb/s, PBI = 50, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is amount of repetition. 
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Figure 40 54 Mb/s, PBI = 50, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is amount of repetition.  



 47

0 2 4 6 8 10 12 14 16 18 20
10-5

10-4

10-3

10-2

10-1

100

Eb/Ni

P
b

802.16a 54 Mb/s PBI = 100 Unintentional Interference

 

 
MRC =1
MRC =48
MRC=96
MRC=192

 
Figure 41 54 Mb/s, PBI = 100, Probability of bit error vs. /b iE N  with / 20b oE N dB=  

in the presence of interference.  Parameter is amount of repetition. 
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Figure 42 54 Mb/s, PBI = 100, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is amount of repetition. 
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Figure 43 54 Mb/s, PBI = 200, Probability of bit error vs. /b iE N  with / 20b oE N dB=  

in the presence of interference.  Parameter is amount of repetition.  
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Figure 44 54 Mb/s, PBI = 200, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is amount of repetition. 
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The effects of MRC can be seen in Figure 37 through Figure 44.  As the number 

of affected data subcarriers increases to 200 for full band interference, the effects of 

MRC are positive performance gains.  In tests where there is less interference, such as a 

low power unintentional interference signal occupying a small percentage of subcarriers, 

it is observed that MRC has a much bigger impact.  This is interesting and can be 

explained.  With a relatively low power and low percentage of interference subcarriers, 

MRC is able to perform well because the signal is not too badly degraded.  In more 

severe conditions MRC has a positive impact but it is not as great.  Looking at Figure 45 

with SIR =18dB, the advantage of MRC = 192 over MRC = 1 is approximately 18 dB. 

In Figure 37 it can be seen that there is little gain from L = 96 to L = 192.  This is 

because repeating the data 96 times is enough to offer any performance gains given 

through repetition and MRC.  In Figure 40 L = 96 is distinctly better than L = 192 though 

not by a large margin.  This trend can also be seen in Figure 42.  A possible explanation 

is that L = 96 outperforms L = 192 in these examples for PER because while they have 

similar performance in terms of bP , the packet length is slightly longer for L = 192 despite 

doubling the DL bursts for L = 96. 
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3. 12 Mb/s, Constant MRC with Unintentional Interference 
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Figure 45 12 Mb/s, MRC =1, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 46 12 Mb/s, MRC =1, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is number of interference-
corrupted subcarriers. 
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Figure 47 12 Mb/s, MRC =48, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 48 12 Mb/s, MRC =48, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is number of interference-
corrupted subcarriers. 
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Figure 49 12 Mb/s, MRC =96, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is number of interference-corrupted subcarriers. 
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Figure 50 12 Mb/s, MRC =96, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is number of interference-
corrupted subcarriers. 



 53

0 1 2 3 4 5 6
10-6

10-5

10-4

10-3

10-2

Eb/Ni

P
b

802.16a 12 Mb/s with Unintentional Partial and Full Band Interference, MRC=192

 

 
PBI=25
PBI=50
PBI=100
Full Band

 
Figure 51 12 Mb/s, MRC =192, Probability of bit error vs. /b iE N  with / 20b oE N dB=  

in the presence of interference.  Parameter is number of interference-corrupted 
subcarriers. 
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Figure 52 12 Mb/s, MRC =192, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is number of interference-
corrupted subcarriers. 
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Figures 45 and 46 are essentially repeated from Figure 9 and Figure 10.  They are 

repeated for easier comparisons between the no repetition case, which they represent, and 

the repetition cases in section 3.  Figure 51 and Figure 52 list four data sets in the legend 

yet there are only two lines present, the lines for the two worst cases in terms of 

reliability, PBI = 100 and PBI = 200.  The reason only two lines can be seen is that with 

the most reliable data rate of 12 Mb/s and L = 192, the data is going to be very reliable 

and for less than PBI = 100, there were no errors.  If there are no errors, the data points 

do not plot. 
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4. 12 Mb/s, Constant PBI with Unintentional Interference 
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Figure 53 12 Mb/s, PBI=25, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is amount of repetition. 
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Figure 54 12 Mb/s, PBI=25, Probability of packet error vs. /b iE N  with / 20b oE N dB=  

in the presence of interference.  Parameter is amount of repetition. 
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Figure 55 12 Mb/s, PBI=50, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is amount of repetition.  
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Figure 56 12 Mb/s, PBI=50, Probability of packet error vs. /b iE N  with / 20b oE N dB=  

in the presence of interference.  Parameter is amount of repetition.  
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Figure 57 12 Mb/s, PBI=100, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is amount of repetition.  
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Figure 58 12 Mb/s, PBI=100, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is amount of repetition. 
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Figure 59 12 Mb/s, PBI=200, Probability of bit error vs. /b iE N  with / 20b oE N dB=  in 

the presence of interference.  Parameter is amount of repetition. 
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Figure 60 12 Mb/s, PBI=200, Probability of packet error vs. /b iE N  with 

/ 20b oE N dB=  in the presence of interference.  Parameter is amount of repetition. 
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As with the data collected using 54 Mb/s, Figure 45 through Figure 60 show that 

using MRC results in a significant improvement in the performance but at the cost of data 

throughput.  This result confirms the expectations that while MRC will reduce data 

throughput, it will significantly enhance performance.  Using 54 Mb/s, MRC = 96, SNR 

= 20dB and PBI = 100, a SIR = 12 dB is required to achieve a 410bP −= .  Keeping all 

parameters the same except utilizing 12 Mb/s, only SIR = 2 dB is required to achieve the 

same 410bP −= .  Reducing the data rate offers a 10 dB performance gain.  A more extreme 

example shows the additional utility MRC offers the user.  To transmit with the absolute 

highest throughput the user can select 54 Mb/s with no MRC.  In order to achieve 

a 110bP −= , a SNR = 17 dB is required.  Without MRC, the user could lower the data rate 

to 12 Mb/s to achieve 110bP −=  with an SNR = 2 dB.  However, by utilizing MRC = 48 

and data rate 54 Mb/s, only SNR = 2dB is needed to achieve 110bP −= .  With the same 

data rate and MRC = 192, SNR = 0 dB achieves 110bP −= .  The performance gain from 

no MRC to MRC = 48 is the most significant gain. 

Figures 53 through Figure 56 do not show all the curves listed in the legend 

because in certain cases in those figures the simulation yielded no bit errors and therefore 

approximated bP  and PER as zero.  This falls in line with what would be expected.  12 

Mb/s is the most reliable data rate and so it stands to reason that for MRC =192, bP  is 

approximately zero for both PBI = 25 and PBI = 50.   

The research presented in this chapter found that using diversity and MRC 

drastically enhances the performance of 802.16a.  Additionally, it was found that the 

most important factor is the amount of interference power not the number of interference-

corrupted subcarriers.  Also, decreasing the required /b iE N implies increasing the usable 

range meaning that performance can be traded for range.  The next chapter provides a 

conclusion to the study as well as ideas for future work. 
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IV. SUMMARY AND RECOMMENDATIONS FOR FUTURE 
WORK 

A. SUMMARY 

802.16a is an IEEE Wireless MAN standard that will likely be used across the 

world.  Its low infrastructure requirements, high reliability and data rate and the 

commercial applications of ‘WiMax’ will keep 802.16a expanding.  It is reasonable to 

consider the standard for military use because of its high performance with low power 

and its low cost with respect to most military radios, despite its requirement to have fixed 

BSs and SSs. 

The system demonstrated the significant improvements in range, reliability or 

power can be achieved using MRC with 802.16a’s OFDM mode.  The cases that were 

investigated are unintentional interference, intentional interference and partial band 

jamming.  With the 54 Mb/s data rate, improvements to the bP  and PER were between 13-

15 dB depending on the MRC and PBI.  With 12 Mb/s, only an 8 dB improvement was 

achieved to the bP  and the PER using MRC.  Additionally, with MRC it was found that 

there was no advantage to an intentional interferer over an unintentional interferer from 

the jammer’s perspective because it is the total amount of power that is the most 

significant factor, not how the power is distributed in frequency. 

B. FUTURE WORK 

This thesis investigated only a very small part of the broad standard of 802.16a 

leaving many possibilities yet to be explored in future work.  One area which could be 

examined is a comparison of the effect of a multiple antenna system versus the effect of 

the MRC technique discussed in this thesis.  Multiple antenna systems can lead to large 

diversity gains and could prove very useful for operation in the harshest interference 

channels. [6] 
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Lastly, the effects of MRC could be applied to IEEE 802.16e to accommodate 

mobile SSs.  The 802.16e standard will likely provide the most use for the military as 

often times in the battlefield either the BS or the SS is mobile.  MRC could enhance the 

performance of a potentially critical standard. 
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